Search results

Search for "grain boundaries" in Full Text gives 137 result(s) in Beilstein Journal of Nanotechnology.

Unveiling the nature of atomic defects in graphene on a metal surface

  • Karl Rothe,
  • Nicolas Néel and
  • Jörg Kröger

Beilstein J. Nanotechnol. 2024, 15, 416–425, doi:10.3762/bjnano.15.37

Graphical Abstract
  • , during its epitaxial growth in surface science experiments or its fabrication for applications, defects, that is, deviations from the ideal 2D lattice, inevitably occur. Examples for defects are vacancies, interstitial atoms, grain boundaries, stacking faults or wrinkles [5][6][7][8][9][10][11][12][13
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2024

On the mechanism of piezoresistance in nanocrystalline graphite

  • Sandeep Kumar,
  • Simone Dehm and
  • Ralph Krupke

Beilstein J. Nanotechnol. 2024, 15, 376–384, doi:10.3762/bjnano.15.34

Graphical Abstract
  • , and graphene is already in use as a transparent and flexible conductor. However, graphene intrinsically lacks a strong response, and only by engineering defects, such as grain boundaries, one can induce piezoresistivity. Nanocrystalline graphene (NCG), a derivative form of graphene, exhibits a high
  • density of defects in the form of grain boundaries. It holds an advantage over graphene in easily achieving wafer-scale growth with controlled thickness. In this study, we explore the piezoresistivity in thin films of nanocrystalline graphite. Simultaneous measurements of sheet resistance and externally
  • applied strain on NCG placed on polyethylene terephthalate (PET) substrates provide intriguing insights into the underlying mechanism. Raman measurements, in conjunction with strain applied to NCG grown on flexible glass, indicate that the strain is concentrated at the grain boundaries for smaller strain
PDF
Album
Full Research Paper
Published 08 Apr 2024

Control of morphology and crystallinity of CNTs in flame synthesis with one-dimensional reaction zone

  • Muhammad Hilmi Ibrahim,
  • Norikhwan Hamzah,
  • Mohd Zamri Mohd Yusop,
  • Ni Luh Wulan Septiani and
  • Mohd Fairus Mohd Yasin

Beilstein J. Nanotechnol. 2023, 14, 741–750, doi:10.3762/bjnano.14.61

Graphical Abstract
  • -temperature environment, which forms a rough surface covered with nanoparticles. The carbide layer formed on the wire will induce localized stress on the surface due to lattice mismatch and, consequently, a breakup along grain boundaries to yield particles of different sizes and shapes [13]. According to the
PDF
Album
Full Research Paper
Published 21 Jun 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
  • electrons being in proximity to the surface) result in an increased Coulombic force of restoration and hence a shift in the dielectric function [47]. Similarly, with a decrease in grain size, due to the fact that there is an increase in the volume fraction of grain boundaries compared to the grains, and
PDF
Album
Review
Published 27 Mar 2023

Combining physical vapor deposition structuration with dealloying for the creation of a highly efficient SERS platform

  • Adrien Chauvin,
  • Walter Puglisi,
  • Damien Thiry,
  • Cristina Satriano,
  • Rony Snyders and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2023, 14, 83–94, doi:10.3762/bjnano.14.10

Graphical Abstract
  • ). These small pores highlight the early dealloying stage and the propagating front at the grain boundaries [38]. After 30 min in HCl, bigger pores are formed (Figure 2b) and the cross-section image shows structures made of a porous and full layers (Figure 2f). After 60 min of dealloying, the initial
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2023

Electrical and optical enhancement of ITO/Mo bilayer thin films via laser annealing

  • Abdelbaki Hacini,
  • Ahmad Hadi Ali,
  • Nurul Nadia Adnan and
  • Nafarizal Nayan

Beilstein J. Nanotechnol. 2022, 13, 1589–1595, doi:10.3762/bjnano.13.133

Graphical Abstract
  • increase is due to the effect of the laser on the surface reducing defects and eliminating grain boundaries. Above 120 mJ, the grain size decreased with the increase of the laser energy to 16.6 nm for 240 mJ. This decrease is due to the diffusion of gas atoms from the chamber into the upper layer
  • crystalline improvement leads to less light scattering in the metal layer [29][30]. Moreover, laser annealing reduces the defects, including grain boundaries and impurities, reducing light scattering and photon–electron interactions [29][30][31]. The optical bandgap energy Eg of ITO/Mo thin film was studied
  • resistivity follows for higher annealing energies. The resistivity variation can be explained by the behavior of the metal–semiconductor contact and the effect of laser annealing on the structural defects of the surface. The inclusion of a thin metal film with low resistivity and the reduction of grain
PDF
Album
Full Research Paper
Published 28 Dec 2022

Structural studies and selected physical investigations of LiCoO2 obtained by combustion synthesis

  • Monika Michalska,
  • Paweł Ławniczak,
  • Tomasz Strachowski,
  • Adam Ostrowski and
  • Waldemar Bednarski

Beilstein J. Nanotechnol. 2022, 13, 1473–1482, doi:10.3762/bjnano.13.121

Graphical Abstract
  • of the crystalline part, and R2 denotes the sum of resistance of both crystalline part and grain boundaries. C1 and C2 denote the electric capacities of the two circuits, α1 and α2 are fit parameters, ω = 2πf is the angular frequency of the measuring field E-field. The value α describes the
  • contributions to total conductivity, that is, the conductivity of the bulk material (high-frequency contribution, see insert in Figure 10) and the conductivity of the grain boundaries (low-frequency contribution. The calculated value of R was used to determine the DC conductivity of the bulk material σ using
  • the grain boundaries, and the green line shows fit data for the grain interior (crystalline part of the sample). Lattice parameter, cell volume, average crystallite size (XRD), and specific surface area of LiCoO2 powders. DC conductivity of the LiCoO2 samples measured at 293 K. The values present only
PDF
Album
Full Research Paper
Published 07 Dec 2022

A cantilever-based, ultrahigh-vacuum, low-temperature scanning probe instrument for multidimensional scanning force microscopy

  • Hao Liu,
  • Zuned Ahmed,
  • Sasa Vranjkovic,
  • Manfred Parschau,
  • Andrada-Oana Mandru and
  • Hans J. Hug

Beilstein J. Nanotechnol. 2022, 13, 1120–1140, doi:10.3762/bjnano.13.95

Graphical Abstract
  • grain boundaries [69] of the rather thick metallic coating applied to the tip side of the cantilever. Note that a nominally 20 nm thick Pt coating is required to permit tunneling, but the coating thickness along the cantilever could presumably be minimized using masking procedures similar to those used
  • for the coating of high-quality factor cantilevers for magnetic force microscopy [29]. In future work, much thinner coating thicknesses could be used, or the coating could be applied to the cantilever side to reduce energy dissipation processes arising from the grain boundaries of the polycrystalline
PDF
Album
Full Research Paper
Published 11 Oct 2022

Self-assembly of C60 on a ZnTPP/Fe(001)–p(1 × 1)O substrate: observation of a quasi-freestanding C60 monolayer

  • Guglielmo Albani,
  • Michele Capra,
  • Alessandro Lodesani,
  • Alberto Calloni,
  • Gianlorenzo Bussetti,
  • Marco Finazzi,
  • Franco Ciccacci,
  • Alberto Brambilla,
  • Lamberto Duò and
  • Andrea Picone

Beilstein J. Nanotechnol. 2022, 13, 857–864, doi:10.3762/bjnano.13.76

Graphical Abstract
  • compact molecular film is crucial to obtain high-performance devices, since an efficient charge carrier transport is hindered by morphological defects, such as grain boundaries or pinholes [10][11]. Moreover, crystalline and well-ordered layers are particularly suitable for spatially averaging
PDF
Album
Full Research Paper
Published 30 Aug 2022

Revealing local structural properties of an atomically thin MoSe2 surface using optical microscopy

  • Lin Pan,
  • Peng Miao,
  • Anke Horneber,
  • Alfred J. Meixner,
  • Pierre-Michel Adam and
  • Dai Zhang

Beilstein J. Nanotechnol. 2022, 13, 572–581, doi:10.3762/bjnano.13.49

Graphical Abstract
  • addition, point defect-induced trions in monolayer WS2 on a nonconducting substrate can be visualized via photoluminescence in order to precisely explore the exciton binding energy [15]. The optical properties of edges and grain boundaries in 2D-TMDC materials have also been characterized by
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2022

Tubular glassy carbon microneedles with fullerene-like tips for biomedical applications

  • Sharali Malik and
  • George E. Kostakis

Beilstein J. Nanotechnol. 2022, 13, 455–461, doi:10.3762/bjnano.13.38

Graphical Abstract
  • different allotropes depending on the hybridizations of the C–C bond, that is, sp, sp2, or sp3. Furthermore, a variety of short-range ordering effects can interact with each other and this, along with the effects of microporosity, grain boundaries, and defects, render this a fascinating material. Following
PDF
Album
Full Research Paper
Published 19 May 2022

Electrostatic pull-in application in flexible devices: A review

  • Teng Cai,
  • Yuming Fang,
  • Yingli Fang,
  • Ruozhou Li,
  • Ying Yu and
  • Mingyang Huang

Beilstein J. Nanotechnol. 2022, 13, 390–403, doi:10.3762/bjnano.13.32

Graphical Abstract
  • to the removal of grain boundaries, the single-crystal GR devices are four times more capable of handling current than polycrystalline GR devices. Shen et al. [71] prepared GR ESD switches and analyzed their electrical characteristics and reliability. The switch did work only once. Therefore, ESD
PDF
Album
Review
Published 12 Apr 2022

Measurement of polarization effects in dual-phase ceria-based oxygen permeation membranes using Kelvin probe force microscopy

  • Kerstin Neuhaus,
  • Christina Schmidt,
  • Liudmila Fischer,
  • Wilhelm Albert Meulenberg,
  • Ke Ran,
  • Joachim Mayer and
  • Stefan Baumann

Beilstein J. Nanotechnol. 2021, 12, 1380–1391, doi:10.3762/bjnano.12.102

Graphical Abstract
  • -conductive phase and 40 vol % FeCo2O4 as electron-conductive phase was synthesized. TEM measurements showed a relatively pure dual-phase material with only minor amounts of a tertiary (Sm,Ce)(Fe,Co)O3 perovskite phase and isolated residues of a rock salt phase at the grain boundaries. The obtained material
  • elevated concentrations of electron-conducting elements have accumulated on the grain boundaries between CSO and FC2O, which could possibly influence the effect of charge distribution during or after polarization with the AFM tip in direct vicinity of CSO-FC2O grain boundaries. However, independent from
  • where the AFM tip was placed during polarization. The rough sketches illustrate the grain boundaries at the interface between the polarized ceria grain and the surrounding electron-conductive grains. Comparison of the average relaxation curves of the surface potential after polarization. For
PDF
Album
Full Research Paper
Published 15 Dec 2021

Morphology-driven gas sensing by fabricated fractals: A review

  • Vishal Kamathe and
  • Rupali Nagar

Beilstein J. Nanotechnol. 2021, 12, 1187–1208, doi:10.3762/bjnano.12.88

Graphical Abstract
  • concentrations of ethanol. The SnO2 with NDs showed enhanced ethanol sensing in comparison to SnO2 NWs without NDs, which was attributed to a higher surface-to-volume ratio, more grain boundaries, and the presence of junction barriers at the ND–NW interfaces. The estimated D for the SnO2 nanodendrites was 1.88
PDF
Album
Supp Info
Review
Published 09 Nov 2021

Is the Ne operation of the helium ion microscope suitable for electron backscatter diffraction sample preparation?

  • Annalena Wolff

Beilstein J. Nanotechnol. 2021, 12, 965–983, doi:10.3762/bjnano.12.73

Graphical Abstract
  • evaluation of the grain boundaries shows that ≈8% of the grain boundaries are low-angle grain boundaries (LAGB). These are displayed in yellow in Figure 3e. High-angle grain boundaries (HAGB) which are displayed in red in Figure 3e correspond to 92% of the grain boundaries. These values serve as reference
  • and a video of the occurring sample change is given in Supporting Information File 2. The patches appear to nucleate around the grain boundaries at the darker grains within the sample and then gradually increase in size and merge. The patches are highlighted with blue arrows in Figure 5b and Figure 5c
  • different times. This result is in good agreement with the observed dark patch growth in the ion channeling images. The kernel average misorientation map and grain boundary map overlay (Figure 7c) shows a higher local misorientation and low-angle grain boundaries within the topographically higher regions
PDF
Album
Supp Info
Full Research Paper
Published 31 Aug 2021

Effects of temperature and repeat layer spacing on mechanical properties of graphene/polycrystalline copper nanolaminated composites under shear loading

  • Chia-Wei Huang,
  • Man-Ping Chang and
  • Te-Hua Fang

Beilstein J. Nanotechnol. 2021, 12, 863–877, doi:10.3762/bjnano.12.65

Graphical Abstract
  • stacking faults occur in all copper layers. Stacking faults are produced from two adjacent HCP layers. These defects are caused by the release of energy stored in the specimens. The deformation of the polycrystalline structure is mostly affected by the grain boundaries [46][47]. When the dislocations
  • propagate to the grain boundaries, they will cause the grain boundaries to slide and twist. The dislocations may be absorbed by the grain boundaries or diffuse into the grains. Besides, the evolution of grains is also one of the main factors of crystal structure deformation. As shown in Figure 16b1 and
  • Figure 16c1, grains “1” and “2” and grains “3” and “4” will merge with increasing shear strain and form new grains with dislocations and stacking faults, as shown in Figure 16b4 and Figure 16c4. The evolution of grains is due to the local displacement of grain boundaries and atoms adjacent to the grain
PDF
Album
Full Research Paper
Published 12 Aug 2021

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
  • ], tungsten [83][84][85], an Fe–Zr alloy [86], a Y2O3/Fe bilayer [87], and nanocluster films of magnetite and core–shell iron–magnetite nanoparticles [88]. In these studies, various implantation effects have been investigated, including the tendency for grain boundaries and interfaces to act as sinks for
PDF
Album
Review
Published 02 Jul 2021

Properties of graphene deposited on GaN nanowires: influence of nanowire roughness, self-induced nanogating and defects

  • Jakub Kierdaszuk,
  • Piotr Kaźmierczak,
  • Justyna Grzonka,
  • Aleksandra Krajewska,
  • Aleksandra Przewłoka,
  • Wawrzyniec Kaszub,
  • Zbigniew R. Zytkiewicz,
  • Marta Sobanska,
  • Maria Kamińska,
  • Andrzej Wysmołek and
  • Aneta Drabińska

Beilstein J. Nanotechnol. 2021, 12, 566–577, doi:10.3762/bjnano.12.47

Graphical Abstract
  • contact with graphene. The lowest concentration of defects is observed for graphene deposited on nanowires with the lowest density. The contact between graphene and densely arranged nanowires leads to a large density of vacancies. On the other hand, grain boundaries are the main type of defects in
  • the value of RDD’ ratio equals to 3.5 is characteristic of grain boundaries, five is characteristic of multiple vacancies, seven corresponds to single vacancies, while 13 is observed for sp3 hybridisation defects [20][49]. Furthermore, theoretical calculations predicted values of 1.3 and 10.5 for on
  • maximum of high intensity and several smaller maxima can be observed, and approx. 80% or more defects are described by the main maximum. Single vacancies are dominant defects in N0 and N100 samples (maximum of distribution at RDD’ is equal to 8.3 and 7.5, respectively) while the grain boundaries are the
PDF
Album
Full Research Paper
Published 22 Jun 2021

The patterning toolbox FIB-o-mat: Exploiting the full potential of focused helium ions for nanofabrication

  • Victor Deinhart,
  • Lisa-Marie Kern,
  • Jan N. Kirchhof,
  • Sabrina Juergensen,
  • Joris Sturm,
  • Enno Krauss,
  • Thorsten Feichtner,
  • Sviatoslav Kovalchuk,
  • Michael Schneider,
  • Dieter Engel,
  • Bastian Pfau,
  • Bert Hecht,
  • Kirill I. Bolotin,
  • Stephanie Reich and
  • Katja Höflich

Beilstein J. Nanotechnol. 2021, 12, 304–318, doi:10.3762/bjnano.12.25

Graphical Abstract
  • -crystalline gold constitute an ideal platform for plasmonic applications due to the lack of scattering losses at grain boundaries and surface roughness [56]. In nanostructured gold, collective excitations of the free electron gas may occur under the incidence of visible light [2]. These plasmon polaritons of
PDF
Album
Supp Info
Full Research Paper
Published 06 Apr 2021

The influence of an interfacial hBN layer on the fluorescence of an organic molecule

  • Christine Brülke,
  • Oliver Bauer and
  • Moritz M. Sokolowski

Beilstein J. Nanotechnol. 2020, 11, 1663–1684, doi:10.3762/bjnano.11.149

Graphical Abstract
  • morphology on a micrometer scale [60]. We propose that the defect-rich regions exhibit a large step density due to impurities and/or grain boundaries. Consequently, we assume that the hot spots are related to an inhomogeneous mesoscopic roughness of the Cu(111) surface, which is remnant after sputtering and
PDF
Album
Full Research Paper
Published 03 Nov 2020

Proximity effect in [Nb(1.5 nm)/Fe(x)]10/Nb(50 nm) superconductor/ferromagnet heterostructures

  • Yury Khaydukov,
  • Sabine Pütter,
  • Laura Guasco,
  • Roman Morari,
  • Gideok Kim,
  • Thomas Keller,
  • Anatolie Sidorenko and
  • Bernhard Keimer

Beilstein J. Nanotechnol. 2020, 11, 1254–1263, doi:10.3762/bjnano.11.109

Graphical Abstract
  • a rather low RRR of 3.4, which is attributed to enhanced scattering of conduction electrons at the grain boundaries. Neutron reflectometry has shown that Fe/Nb superlattices with x ≤ 2.5 nm form a depth-modulated FeNb alloy with the concentration of iron varying within the superlattice unit cell
PDF
Album
Full Research Paper
Published 21 Aug 2020

High permittivity, breakdown strength, and energy storage density of polythiophene-encapsulated BaTiO3 nanoparticles

  • Adnanullah Khan,
  • Amir Habib and
  • Adeel Afzal

Beilstein J. Nanotechnol. 2020, 11, 1190–1197, doi:10.3762/bjnano.11.103

Graphical Abstract
  • resistivity of grain boundaries, more energy is required for electron hopping, thus, increasing the loss [27][28]. In the high frequency region that corresponds to the higher conductivity, energy required for the hopping of electrons is less and therefore, the loss decreases [27][28]. Dielectric loss is an
  • frequencies, the greater resistive influence of grain boundaries results in lower ac conductivity [28][29]. It is important to note that pristine PTh inherently exhibits the lowest ac conductivity and the highest loss tangent. Therefore, core–shell BTO-PTh nanoparticles offer an excellent combination of
PDF
Album
Full Research Paper
Published 10 Aug 2020

Gas-sensing features of nanostructured tellurium thin films

  • Dumitru Tsiulyanu

Beilstein J. Nanotechnol. 2020, 11, 1010–1018, doi:10.3762/bjnano.11.85

Graphical Abstract
  • region enriched in holes is formed at the surface and at grain boundary and intragrain regions. Therefore, when the films are exposed to NO2, the surface and grain boundaries are the most affected by the gas reaction. Although the gas sensing occurs due to the variation in hole density at the enriched
PDF
Album
Full Research Paper
Published 10 Jul 2020

Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin–photon interface

  • Stefania Castelletto,
  • Faraz A. Inam,
  • Shin-ichiro Sato and
  • Alberto Boretti

Beilstein J. Nanotechnol. 2020, 11, 740–769, doi:10.3762/bjnano.11.61

Graphical Abstract
PDF
Album
Review
Published 08 May 2020

Structural optical and electrical properties of a transparent conductive ITO/Al–Ag/ITO multilayer contact

  • Aliyu Kabiru Isiyaku,
  • Ahmad Hadi Ali and
  • Nafarizal Nayan

Beilstein J. Nanotechnol. 2020, 11, 695–702, doi:10.3762/bjnano.11.57

Graphical Abstract
  • roughness is attributed to the increasing grain sizes [35]. The large grain sizes of IAAI films reduce the number of grain boundaries and thus the scattering at grain boundaries. This improves the carrier mobility leading to an increased electrical conductivity of the films. The surface morphology of the
  • less light scattering in the metal interlayer [28][29][30]. The annealing treatment has successfully reduced the number of defects leading light scattering [4][36]. The enhanced structural ordering decreases the electron scattering at grain boundaries and impurities. This can lead to an increase in the
PDF
Album
Full Research Paper
Published 27 Apr 2020
Other Beilstein-Institut Open Science Activities